Berdasarkanlaju perkembangan Bakteri kita memperoleh fungsi eksponensial f(x) = 2*Domain f atau (Df) diperluas menjadi R. Range f atau (Rf) = - on study-assistant.com
Hai Marina, gambar grafiknya ada di bawah yaa. Pembahasan Ingat bahwa a^-m = 1/a^m a^0 = 1 Untuk interval -3 ≤ x ≤3, titik yang dilalui grafik tersebut yaitu Misalkan x = -3 maka y = 2^-3+1 = 2^-2 = 1/2^2 = 1/4 Misalkan x = -2 maka y = 2^-2+1 = 2^-1 = 1/2^1 = 1/2 Misalkan x = -1 maka y = 2^-1+1 = 2^0 = 1 Misalkan x = 0 maka y = 2^0+1 = 2^1 = 2 Misalkan x = 1 maka y = 2^1+1 = 2^2 = 4 Misalkan x = 2 maka y = 2^2+1 = 2^3 = 8 Misalkan x = 3 maka y = 2^3+1 = 2^4 = 16 Sehingga diperoleh titik yang dilaluinya adalah -3,1/4, -2,1/2, -1,1, 0,2, 1,4, 2,8, dan 3,16. Dengan demikian, gambar grafiknya sebagai berikut.HakCipta 2014 pada Kementerian Pendidikan dan Kebudayaan. Dilindungi Undang-Undang MILIK NEGARA TIDAK DIPERDAGANGKAN. Disklaimer: Buku ini merupakan buku siswa yang dipersiapkan Pemerintah dalam rangka implementasi Kurikulum 2013. Buku siswa ini disusun dan ditelaah oleh berbagai pihak di bawah koordinasi Kementerian Pendidikan dan Kebudayaan,
Blog Koma - Pada artikel ini kita akan membahas materi grafik fungsi eksponen dan logaritma. Grafik fungsi eksponen merupakan suatu grafik yang bentuknya monoton yaitu monoton naik atau monoton turun. Namun pada artikel Grafik Fungsi Eksponen dan Logaritma yang kita bahas hanya grafik fungsi eksponennya saja. Dan untuk grafik fungsi logaritma, sebenarnya sudah kami share sebelumnya dengan artikel yang berjudul "fungsi logaritma". Silahkan teman-teman langsung ke link artikel tersebut untuk mempelajari grafik fungsi logaritma. Untuk menggambar Grafik Fungsi Eksponen tidaklah begitu sulit teman-teman. Bentuk fungsi eksponen yang paling sederhana adalah $ fx = a^x \, $. Silahkan teman-teman baca juga materi "fungsi eksponen" agar lebih memudahkan dalam mempelajari dan membuat/menggambar grafik fungsi eksponen. Hal utama yang menentukan bentuk grafik fungsi eksponen adalah nilai $ a \, $ nya atau biasa disebut basis silahkan baca Bentuk Umum Eksponen atau Perpangkatan, jika nilai $ a > 1 \, $ maka grafik umumnya monoton naik dan jika $ 0 1 $ Grafik memotong sumbu Y di $ y = 1 $ dan monoton naik. Bentuk grafiknya $ \clubsuit \, $ Untuk nilai $ 0 1 $ Grafik memotong sumbu Y di $ y = b $ dan monoton naik. Bentuk grafiknya $ \clubsuit \, $ Untuk nilai $ 0 1 $ Grafik memotong sumbu Y di $ y = b + c $ dan monoton naik. $ \clubsuit \, $ Untuk nilai $ 0 < a < 1 $ Grafik memotong sumbu Y di $ y = b + c $ dan monoton turun. Contoh Soal 3. Gambarlah grafik fungsi eksponen berikut ini a. $ fx = 2 \times 3^x + 1 $ b. $ fx = 2 \times 3^x - 3 $ c. $ fx = 2 \times \left \frac{1}{3} \right^x + 1 $ d. $ fx = 2 \times \left \frac{1}{3} \right^x - 3 $ Penyelesaian *. Gambar a dan c nilai $ b = 2 \, $ dan $ c = 1 \, $ sehingga titik potong sumbu Y adalah $ y = 2 + 1 \rightarrow y = 3 $ *. Gambar b dan d nilai $ b = 2 \, $ dan $ c = -3 \, $ sehingga titik potong sumbu Y adalah $ y = 2 - 3 \rightarrow y = -1 $ grafik gambar a dan b monoton naik yaitu grafik gambar c dan d monoton turun yaitu Grafik Fungsi Eksponen Negatif Grafik fungsi eksponen $ fx = -a^x, \, fx = -b \times a^x \, $ dan $ fx = - b \times a^x + c \, $ diperoleh dengan mencerminkan grafik fungsi eksponen $ fx = a^x, \, fx = b \times a^x \, $ dan $ fx = b \times a^x + c \, $ terhadap sumbu X. Contoh Soal 4. Gambarlah grafik fungsi eksponen berikut ini a. $ fx = - 2 \times 3^x $ b. $ fx = - 2 \times 3^x + 3 $ Penyelesaian a. Grafik $ fx = -2\times 3^x \, $ diperoleh dengan mencerminkan grafik $ fx = 2\times 3^x $ . Kita peroleh seperti gambar berikut ini. b. Grafik $ fx = -2\times 3^x + 3 = -2\times 3^x - 3 \, $ diperoleh dengan mencerminkan grafik $ fx = 2\times 3^x - 3 $ . Kita peroleh seperti gambar berikut ini. Demikian pembahasan materi Grafik fungsi eksponen dan logaritma beserta contoh-contohnya. Selanjutnya silahkan baca juga materi lain yang berkaitan dengan menentukan fungsi eksponen dari grafiknya. Semoga materi ini bisa bermanfaat. Terima kasih. BilanganEksponen Bilangan Eksponen biasa digunakan secara luas di berbagai bidang seperti: dalam bidang ekonomi, biologi, kimia, fisika, dan ilmu komputer dengan aplikasi seperti perbungaan, pertumbuhan jumlah penduduk, kinetika kimia, perilaku – perilaku gelombang dan kriptografi kunci publik atau ilmu yang mempelajari tentang bagaimana agar pesan atau Untuk menggambar grafik fungsi eksponen,kita hanya perlu membuat tabel dan mengambil nilai – nilai x tertentu dan menghitung nilai dari fungsi. Selanjutnya kita gambar koordinat titik – titik x, y yang kita peroleh dan menghubungkan titik – titik ini untuk memperoleh grafik fungsi eksponen. Lebih jelasnya kita perhatikan contoh – contoh di bawah ini ! . Contoh 1 Buatlah Sketsa grafik dari $latex y= fx=2^{x}$ Jawab Pertama, kita ambil titik – titik x sebagai domain dari fungsi. Disini kita ambil nilai x dari – 3 sampai 3. Untuk x = -3 Maka nilai y = f 3 = $latex 2^{-3}=\frac{1}{8}$. Dan titiknya adalah -3 ,$latex \frac{1}{8}$. Untuk x = -2 , Maka nilai y = f -2 = $latex 2^{-2}=\frac{1}{4}$. Dan titiknya adalah -2 , $latex \frac{1}{4}$. Untuk x = -1 , Maka nilai y = f -1 = ½ . Dan titiknya adalah -1, ½ . Untuk x = 0 , Maka nilai y = f 0 = 1. Dan titiknya adalah 0,1 . Untuk x = 1, Maka nilai y = f 1 = 2. Dan titiknya adalah 1, 2. Untuk x = 2, Maka nilai y = f 2 = 4. Dan titiknya adalah 2, 4. Untuk x = 3 , Maka nilai y = f 3 = 8. Dan titiknya adalah 3, 8. Hubungkan semua pasangan titik ini, sehingga kita bisa dapatkan grafiknya sebagai berikut !. Contoh 2 Buatlah Sketsa Grafik Jawab Dengan Cara yang sama dengan di atas yaitu dengan mensubstitusi nilai x dari -3 sampai dengan 3 ke dalam fungsi fx kita dapatkan tabel berikut !. Dan grafiknya adalah sebagai berikut !. Contoh 3 Buatlah grafik fungsi eksponensial Jawab Titik potong terhadap sumbu x , terjadi jika y atau fx bernilai 0, sehingga Tidak ada nilai x yang memenuhi untuk fx = 0. Artinya titik potong terhadap sumbu x berada pada saat nilai x di negative tak berhingga. Titik potong terhadap sumbu y, berarti x = 0 berarti titik potong terhadap sumbu y terjadi di titik 0, Titik bantunya bisa dilihat di tabel berikut Grafiknya adalah sebagai berikut ! dari ketiga contoh di atas bisa disimpulkan bahwa grafik fungsi eksponen memiliki asimtot datar yaitu sumbu x, untuk nilai a atau bilangan pokok fungsi bernilai lebih dari nol maka kecenderungan grafiknya bergerak dari kiri ke kanan atas. dan untuk nilai a bilangan pokok fungsi, kecenderungan grafiknya bergerak dari kanan bawah ke kiri atas. Demikianlah pembahasan singkat saya tentang bagaimana melukis grafik fungsi eksponen. Mudah-mudahan bisa membantu. Jika teman – teman ada saran, silahkan tulis di kolom komentar. Salam