Jikamatriks A = ((1 3)(4 -2)), matriks B=((2 3)(2 5)). Maka matrik (A - B)^T adalah. A. ((-4 2)(0 -7)) B. ((3 6)(6 3)) C. ((3 5)(6 3)) D. ((3 6)(4 3))
Kelas 11 SMAMatriksInvers Matriks ordo 3x3Invers Matriks ordo 3x3MatriksALJABARMatematikaRekomendasi video solusi lainnya1055Invers dari matriks A = 2 -1 1 -1 1 1 3 -1 2 ad...0422Determinan matriks H = -3 1 1 0 2 -1 4 -3 0 adalah0518Jika matriks A = a 2 3 1 a 4 a 2 5 tidak mempunyai inv...Teks videodisini kita punya soal dimana kita harus menentukan nilai a sehingga matriks ordo 3 kali 3 ini tidak memiliki invers matriks yang tidak memiliki invers adalah matriks yang nilai determinannya adalah nol berarti kita tahu bahwa determinan dari matriks A haruslah 0 maka dari itu kita akan cari determinannya kita cari menggunakan rumus sebagai berikut yaitu kita tulis kembali A1 A2 A2 45 kemudian kita ambil dua yang paling kiri saja jadi A1 A2 A2 dan juga 345 nya tidak usah ikut kan nah kemudian Kemudian kita kali ke bawah seperti ini kita kali yang ini lalu ditambah dengan perkalian Yang ini ditambahkalian ini kemudian kita kurangi dengan perkalian Yang ini 2 * 4 * A disini adalah negatif 5 kali 1 Kali 2 negatif apabila kita mencari ordo 3 * 3, maka rumus terminalnya adalah sebagai berikut ini yang sudah kita gambar tadi Maka hasilnya adalah 5 a kuadrat 28 a ditambah 6 dikurangi dalam kurung 3 a kuadrat ditambah 8 a + 10 = 0, maka dari itu menjadi 2 kuadrat min 4 sama dengan nol atau apabila kita keluarkan duanya atau kita pindah empatnya ke sisi sebelah kanan maka 2 kuadrat = 4 di mana a kuadrat = 2 dan nilai a = plus minus akar 2 yang ada di opsi jawaban B Sekian dan sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Tentukannilai a dan b pada matriks berikut: Jawab: Operasi Matriks 1. Penjumlahan dan Pengurangan Matriks Dua buah matriks dapat dijumlahkan jika mempunyai ordo yang sama. Elemen-elemen yang seletak dijumlahkan atau dikurangkan. Contoh: 2. Perkalian Matriks a. Perkalian Skalar dengan Matriks Contoh: Diketahui matriks , tentukan 4M Jawab: b.
Kelas 11 SMAMatriksOperasi Pada MatriksOperasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videountuk mengerjakan soal seperti ini, maka kita perlu mengetahui konsep dari matriks di soal Kita disuruh menentukan matriks 2A disini lalu diberikan sebuah persamaan di sini kita harus mengetahui konsep dari matriks itu Misalkan matriks B dikali matriks A = matriks C maka matriks A = matriks B invers dikali matriks C berarti di sini kita perlu meng invers matriks yang ini cara menginvers seperti ini misalkan matriks A itu bentuknya seperti ini maka invers adalah seperti ini rumusnya 1 per a X dikurang B dikali C lalu dikali matriks adjoint kita tinggal menukarkan letak dari a&d di sini lalu kita akan mengalihkan b&c dengan negatif 1 sekarang kita lihat bentuknya Disini Ada bentuk matriks seperti ini kita bisa memisahkan bahwa disini hanya itu adalah 1 kemudian 2 nya itu adalah B3 nya itu adalah dan tempatnya itu adalah b. Maka bentuk inversnya adalah seperti ini kita tinggal hitung saja S = 1 per -2 lalu dikali ajuin kemudian kita tinggal mengalikan masuk 1 per -2 nya di sini sehingga hasilnya menjadi di sini - 2 lalu disini satu disini 3/2 lalu disini negatif 1/2 Sehingga ini adalah bentuk invers dari matriks yang ini karena kita sudah mencari invers dari matriks yang ini maka kita bisa mencari matriks A nya disini kita akan melakukan perkalian matriks maka kita harus mengetahui aturan perkalian dalam matriks 2 * 2 aturannya seperti ini kita akan mengalihkan baris dengan kolom dengan aturan seperti ini Maka kita bisa langsung mencari matriks aja. di sini berarti baterainya bentuknya adalah untuk baris pertama kolom pertama itu negatif 2 dikali 0 ditambah 1 dikali 1 hasilnya menjadi 1 kemudian negatif 2 dikali 1 ditambah 1 dikali 0 hasilnya menjadi -2 Lalu 3 per 2 dikali 0 ditambah negatif 1 per 2 dikali 1 hasilnya menjadi negatif 1/2 kalau yang terakhir 3 per 2 dikali 1 ditambah negatif 1 per 2 dikali 0 hasilnya menjadi 3/2 disini kita sudah menentukan matriks A nya Kalau di soal kita diminta menentukan matriks 2A berarti kita tinggal mengalikan matriks ini dengan dua di sini dua ya tinggal kita kali masuk saja ke sini ke sini ke sini dan juga ke sini sehingga bentuknya menjadi dua di sini negatif 4 kemudian di sini negatif 1 lalu di sini 3 ini adalah bentuk matriks 2 Ayah sehingga untuk soal kali ini jawabannya adalah yang ah sekian pembahasan kali ini sampai jumpa di pembahasan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Jawabanpaling sesuai dengan pertanyaan Jika MN matriks satuan dengan N= ([2,4],[1,6]) maka M=dots
Kelas 11 SMAMatriksDeterminan Matriks ordo 2x2Determinan Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0127Diketahui M =-1 50 -2 105, maka nilai dari det M^3 sa...Teks videoUntuk salah seperti di penyelesaian adalah kita harus mengetahui lebih dahulu rumus determinan dari matriks berordo 2 * 2 di mana jika kita misalkan punya matriks X yaitu a b c d, maka determinan dari matriks X adalah a * b dikurang b. * c kemudian di soal diminta a + b kuadrat maka kita akan menyelesaikan terlebih dahulu a + b, maka a + b artinya matriks A kita tambahkan matriks B sehingga a + b= 1 + 2 hasilnya adalah 32 + 3 hasilnya adalah 53 + 0 hasilnya adalah 34 + 1 hasilnya adalah 5 kemudian kita kuadratkan karena a + b kuadrat Artinya kita kalikan maka kita bisa Tuliskan disini 3535 dikali dengan 3535 untuk perkalian matriks yaitu 3 kita kalikan dengan 3 + 5 * 3 hasilnya adalah 9 + 15 kemudian 3 * 5 + 5 * 5 hasilnya adalah 15 + 25kemudian 3 * 3 + 5 * 3 hasilnya adalah 9 + 15 kemudian 3 * 5 + 5 * 5 hasilnya adalah 15 ditambah 25 atau bisa kita Tuliskan menjadi 24 kemudian 40 24 40 setelah kita mendapatkan matriks a + b kuadrat maka kita akan mencari determinan dari a. + b kuadrat maka rumusnya adalah a dikali B di mana A dikali Dedi saya adalah 24 kita X dengan 40 dikurang B dikali C yaitu 40 dikali 24 hasilnya adalah 0 demikian pembahasan soal ini sampai jumpa Disa berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Jikamatriks A=(1 4 2 3), maka nilai x yang memenuhi persamaan |A-xl|=0 dengan I matriks satuan dan |A-xl| determinan dari A-xl adalah. Dedi kurang BC kita lanjutkan kita cari a dikurang X dikali ini berarti sama dengan sama dengan 1423 kurang X dikali matriks satuan itu sama dengan 1001 detik ini berarti = 1423 kurang X 00 X yang
Kelas 11 SMAMatriksOperasi Pada MatriksDiketahui matriks A = 1 2 1 3 dan B 4 1 1 3. Jika matriks C berordo 2 x 2 memenuhi AC=B, maka determinan matriks C adalah ....Operasi Pada MatriksDeterminan Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo kok fans disini kita mempunyai dua buah matriks yaitu matriks A dan matriks B jika matriks c berordo 2 * 2 memenuhi AC = B akan di tentukan determinan dari matriks C tersebut untuk mempermudah penyelesaian kita ingat beberapa konsep tentang matriks misal kita mempunyai 3 buah matriks yaitu a c = b a c dan b adalah matriks maka kita bisa menentukan matriks A dengan cara a invers dikali matriks B juga untuk menentukan determinan misalkan kita mempunyai matriks berordo 2 * 2 yaitu abcd, maka untuk menentukan determinan a. Kita tinggal kalikan a dikali B dikurang dengan b dikali c dan sifat-sifat determinan determinan dari a dikali B itu bisa kita tulis menjadi determinan a dikali Sarinande serta determinan invers itu bisa kita tulis menjadi satu permainan dari a Tuliskan persamaan matriks yang ada di soal yaitu AC = B berdasarkan sifatnya kita bisa Tuliskan menjadi c. = a invers dikali B selanjutnya kita akan menentukan determinan dari matriks C sehingga determinan matriks C akan sama pasti dengan determinan a invers dikali B karena dia sama dengan ruas kiri sama dengan ruas kanan. Sekarang kita akan otak-atik di bagian ruas kanan berdasarkan sifat determinan maka sifat determinan perkalian ini bisa kita bisa menjadi determinan dari a invers dikali dengan determinan B selanjutnya determinan invers bisa kita tulis menjadi 1 per 9 a dikali dengan determinan B nah, sekarang kita bisa menentukan determinan a. Jika kita perhatikan matriks A determinan a bisa ditulis menjadi 1 dikali 3 dikurang 2 dikali 1 diperoleh 1 dan kemudian untuk determinan B bisa kita tulis menjadi 4 dikali 3 dikurang 1 dikali 1 atau diperoleh 12 dikurang 1 11 sehingga jika kita masukkan ke Terminal a yaitu 1 per 1 dikali dengan determinan B yaitu 11 diperoleh hasilnya adalah 11, maka jika kita lihat di opsi jawaban yang tepat adalah opsi B sekian sampai ketemu pada soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Videosolusi dari Tanya untuk jawab Maths - 11 | ALJABAR
MatematikaALJABAR Kelas 11 SMAMatriksOperasi Pada MatriksJika A=1 2 3 4, B=2 3 0 1, dan matriks C=5 2 -1 0, bentuk paling sederhana dari A+C-A+B adalah ....Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videoDisini kita memiliki pertanyaan matriks dan pada pertemuan kali ini kita akan membahas konsep dari penjumlahan dan pengurangan antara matriks dengan matriks yang sama. Bila kita memiliki nilai matriks A disini saja Abcd dan matriks b, maka Bila kita memiliki a. Maka langsung saja kita jumlahkan tiap-tiap elemen Nya maka a tambah b tambah lalu komplain berikutnya adalah c + g dan ditambah Ayah ini berlaku juga dengan pengurangan tapi tidak berlaku dengan perkalian atau pembagian ya maka disini kita pertanyaan yang kita ketahui pertama-tama adalah matriks A matriks B dan matriks c dan pertanyaan adalah a + c dikurangi a + b + c dikurangi dengan a + b, maka sebelum mengerjakan kita dapat menyederhanakan pertanyaan yang kita miliki di sini jadi a place dan disini kita kalikan masuk nih minus-nya minus a b sekarang di sini kita memiliki nilai dan juga minus a maka dikurangi menjadi maka kita mencari nilai c seperti berikut, maka nilai C kita miliki 52 - 10 dikurangi dengan yang lain p2301 sehingga kita akan dapatkan nilai 5 dikurangi 22 dikurangi 311 dikurangi 00 dikurangi 13 jawabannya adalah D sampai jumpa di pertanyaan berikut
3+4 +2=0 2 − +5=0 Jika penyelesaian sistem persamaan di atas adalah dan . Tentukan nilai + . (Selesaikan menggunakan cara invers). 2. Perhatikan gambar berikut! Gambar a dan b masing-masing menunjukkan potongan struk belanjaan Lucky dan Penyelesaian dengan invers matriks ( )=(3 4 2 −1)
MatematikaALJABAR Kelas 11 SMAMatriksDeterminan Matriks ordo 2x2Jika matriks A=1 4 2 3, maka nilai x yang memenuhi persamaan A-xl=0 dengan I matriks satuan dan A-xl determinan dari A-xl adalah . . . .Determinan Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0127Diketahui M =-1 50 -2 105, maka nilai dari det M^3 sa...Teks videoQadha maghrib abcd kita ingin mencari determinan determinan kita tulis abcd yang sama dengan abcd seperti ini B dikurang b c maka kita lanjutkan kita cari a dikurang X dikali ini berarti = = 1423 kurang X dikali matriks satuan itu = 1001 batik ini berarti = 1423 kurang X 00 x = 1 kurang X 4 kurang 042 kurang 3 kurang X 3 kurang X kita lanjutkan kita mencari nilai determinannya disini determinan dari a dikurang X dikali 1 = dikalikan dengan 3 min X dikurang ini berarti 2 * 4 atau 4 * 2 ya bc dari 4 * 2 atau 2 * 4 = 01 X 331 X min x min x min x x 3 min 3 x min x x min x + x kuadrat min 8 sama dengan nol berarti sini x kuadrat min 4 X min 5 sama dengan nol maka di dapat difaktorkan x + 1 x min 5 sama dengan nol terdapat x + 1 = 0 x = 1 maka jawabannya adalah yang min 1 dan sampai jumpa di pertanyaan berikutnya
MatematikaALJABAR Diketahui matriks A= ( 1 2 3 5) dan B.= (3 -2 1 4 ) Jika A^t adalah transpose dari matriks A dan AX =B+ A^t, maka determinan matriks X = Operasi Pada Matriks Determinan Matriks ordo 2x2 Matriks ALJABAR Matematika Cek video lainnya Teks video Sukses nggak pernah instan. Latihan topik lain, yuk! Matematika Fisika Kimia 12 SMA
BerandaJika A = 2 1 ​ 3 2 ​ , maka A -1 = ...PertanyaanJika , maka A-1 = ...ARMahasiswa/Alumni Institut Teknologi BandungPembahasanInvers pada matriks 2 2 Jika maka Diketahui, Invers dari matriks tersebut adalah Oleh karena itu, jawaban yang benar adalah pada matriks 22 Jika maka Diketahui, Invers dari matriks tersebut adalah Oleh karena itu, jawaban yang benar adalah B. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!42Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Perkaliandan perpangkatan matriks adalah sebuah topik yang amat sangat penting. Jika sebelumnya kita sudah tahu bahwa penjumlahan dan pengurangan matriks adalah sebuah topik yang sangat penting, maka perkalian matriks merupakan topik yang tidak kalah penting.
PertanyaanJika matriks-matriks A = 1 2 ​ 4 3 ​ dan I = 1 0 ​ 0 1 ​ memenuhi persamaan A 2 − n A − m I = 0 ,maka n − m = ....Jika matriks-matriks dan memenuhi persamaan , maka EDMahasiswa/Alumni Universitas SriwijayaJawabanjawaban yang tepat adalah yang tepat adalah Ditanya Perkalian skalar dengan mariks dilakukan dengan cara konstanta yang artinya nilai matriks dikalikan dengan cara mengalikan setiap elemen atau komponen nilai matriks dengan skalar. Perhatikan perhitungan berikut Nilai Nilai m Hasil dari adalah . Sehingga, nilai adalah . Jadi, jawaban yang tepat adalah Ditanya Perkalian skalar dengan mariks dilakukan dengan cara konstanta yang artinya nilai matriks dikalikan dengan cara mengalikan setiap elemen atau komponen nilai matriks dengan skalar. Perhatikan perhitungan berikut Nilai Nilai m Hasil dari adalah . Sehingga, nilai adalah . Jadi, jawaban yang tepat adalah E. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!210Yuk, beri rating untuk berterima kasih pada penjawab soal!
a A = b.B = Penyelesaian : det A = = (5 × 3) - (2 × 4) = 7 det B = = ( (-4) × 2) - (3 × (-1)) = - 5 b. Determinan Matriks Ordo 3 × 3 (Pengayaan) Jika A = adalah matriks persegi berordo 3 × 3, determinan A dinyatakan dengan det A =
. vav55phfgo.pages.dev/847vav55phfgo.pages.dev/584vav55phfgo.pages.dev/992vav55phfgo.pages.dev/441vav55phfgo.pages.dev/130vav55phfgo.pages.dev/747vav55phfgo.pages.dev/22vav55phfgo.pages.dev/646vav55phfgo.pages.dev/888vav55phfgo.pages.dev/510vav55phfgo.pages.dev/634vav55phfgo.pages.dev/14vav55phfgo.pages.dev/557vav55phfgo.pages.dev/94vav55phfgo.pages.dev/163
jika matriks a 1 2 3 4